并非下表中的所有实体都能在所有的浏览器中正确地显示。
目前,IE 11 是唯一一个能正确显示所有 HTML5 实体的浏览器。
| 字符 | 实体名称 | 十六进制 | 
|---|---|---|
| 'S | Sacute | 0015A | 
| 's | sacute | 0015B | 
| ‘ | sbquo | 0201A | 
| Sc | 02ABC | |
| sc | 0227B | |
| scap | 02AB8 | |
| S | Scaron | 00160 | 
| s | scaron | 00161 | 
| sccue | 0227D | |
| scE | 02AB4 | |
| sce | 02AB0 | |
| S | Scedil | 0015E | 
| s | scedil | 0015F | 
| ^S | Scirc | 0015C | 
| ^s | scirc | 0015D | 
| scnap | 02ABA | |
| scnE | 02AB6 | |
| scnsim | 022E9 | |
| scpolint | 02A13 | |
| scsim | 0227F | |
| С | Scy | 00421 | 
| с | scy | 00441 | 
| · | sdot | 022C5 | 
| sdotb | 022A1 | |
| sdote | 02A66 | |
| searhk | 02925 | |
| seArr | 021D8 | |
| ↘ | searr | 02198 | 
| ↘ | searrow | 02198 | 
| § | sect | 000A7 | 
| ; | semi | 0003B | 
| seswar | 02929 | |
| \ | setminus | 02216 | 
| \ | setmn | 02216 | 
| sext | 02736 | |
| ? | Sfr | 1D516 | 
| ? | sfr | 1D530 | 
| sfrown | 02322 | |
| sharp | 0266F | |
| Щ | SHCHcy | 00429 | 
| щ | shchcy | 00449 | 
| Ш | SHcy | 00428 | 
| ш | shcy | 00448 | 
| ↓ | ShortDownArrow | 02193 | 
| ← | ShortLeftArrow | 02190 | 
| ∣ | shortmid | 02223 | 
| ∥ | shortparallel | 02225 | 
| → | ShortRightArrow | 02192 | 
| ↑ | ShortUpArrow | 02191 | 
| - | shy | 000AD | 
| Σ | Sigma | 003A3 | 
| σ | sigma | 003C3 | 
| sigmaf | 003C2 | |
| sigmav | 003C2 | |
| ~ | sim | 0223C | 
| simdot | 02A6A | |
| sime | 02243 | |
| simeq | 02243 | |
| simg | 02A9E | |
| simgE | 02AA0 | |
| siml | 02A9D | |
| simlE | 02A9F | |
| simne | 02246 | |
| simplus | 02A24 | |
| simrarr | 02972 | |
| ← | slarr | 02190 | 
| SmallCircle | 02218 | |
| \ | smallsetminus | 02216 | 
| smashp | 02A33 | |
| smeparsl | 029E4 | |
| ∣ | smid | 02223 | 
| smile | 02323 | |
| smt | 02AAA | |
| smte | 02AAC | |
| smtes | 02AAC + 0FE00 | |
| Ь | SOFTcy | 0042C | 
| ь | softcy | 0044C | 
| / | sol | 0002F | 
| solb | 029C4 | |
| solbar | 0233F | |
| ? | Sopf | 1D54A | 
| ? | sopf | 1D564 | 
| spades | 02660 | |
| spadesuit | 02660 | |
| ∥ | spar | 02225 | 
| sqcap | 02293 | |
| sqcaps | 02293 + 0FE00 | |
| sqcup | 02294 | |
| sqcups | 02294 + 0FE00 | |
| √ | Sqrt | 0221A | 
| sqsub | 0228F | |
| sqsube | 02291 | |
| sqsubset | 0228F | |
| sqsubseteq | 02291 | |
| sqsup | 02290 | |
| sqsupe | 02292 | |
| sqsupset | 02290 | |
| sqsupseteq | 02292 | |
| □ | squ | 025A1 | 
| □ | Square | 025A1 | 
| □ | square | 025A1 | 
| SquareIntersection | 02293 | |
| SquareSubset | 0228F | |
| SquareSubsetEqual | 02291 | |
| SquareSuperset | 02290 | |
| SquareSupersetEqual | 02292 | |
| SquareUnion | 02294 | |
| squarf | 025AA | |
| squf | 025AA | |
| → | srarr | 02192 | 
| ? | Sscr | 1D4AE | 
| ? | sscr | 1D4C8 | 
| \ | ssetmn | 02216 | 
| ssmile | 02323 | |
| sstarf | 022C6 | |
| Star | 022C6 | |
| ☆ | star | 02606 | 
| ★ | starf | 02605 | 
| ε | straightepsilon | 003F5 | 
| φ | straightphi | 003D5 | 
| strns | 000AF | |
| Sub | 022D0 | |
| sub | 02282 | |
| subdot | 02ABD | |
| subE | 02AC5 | |
| sube | 02286 | |
| subedot | 02AC3 | |
| submult | 02AC1 | |
| subnE | 02ACB | |
| subne | 0228A | |
| subplus | 02ABF | |
| subrarr | 02979 | |
| Subset | 022D0 | |
| subset | 02282 | |
| subseteq | 02286 | |
| subseteqq | 02AC5 | |
| SubsetEqual | 02286 | |
| subsetneq | 0228A | |
| subsetneqq | 02ACB | |
| subsim | 02AC7 | |
| subsub | 02AD5 | |
| subsup | 02AD3 | |
| succ | 0227B | |
| succapprox | 02AB8 | |
| succcurlyeq | 0227D | |
| Succeeds | 0227B | |
| SucceedsEqual | 02AB0 | |
| SucceedsSlantEqual | 0227D | |
| SucceedsTilde | 0227F | |
| succeq | 02AB0 | |
| succnapprox | 02ABA | |
| succneqq | 02AB6 | |
| succnsim | 022E9 | |
| succsim | 0227F | |
| SuchThat | 0220B | |
| ∑ | Sum | 02211 | 
| ∑ | sum | 02211 | 
| sung | 0266A | |
| Sup | 022D1 | |
| sup | 02283 | |
| ^1 | sup1 | 000B9 | 
| ^2 | sup2 | 000B2 | 
| ^3 | sup3 | 000B3 | 
| supdot | 02ABE | |
| supdsub | 02AD8 | |
| supE | 02AC6 | |
| supe | 02287 | |
| supedot | 02AC4 | |
| Superset | 02283 | |
| SupersetEqual | 02287 | |
| suphsol | 027C9 | |
| suphsub | 02AD7 | |
| suplarr | 0297B | |
| supmult | 02AC2 | |
| supnE | 02ACC | |
| supne | 0228B | |
| supplus | 02AC0 | |
| Supset | 022D1 | |
| supset | 02283 | |
| supseteq | 02287 | |
| supseteqq | 02AC6 | |
| supsetneq | 0228B | |
| supsetneqq | 02ACC | |
| supsim | 02AC8 | |
| supsub | 02AD4 | |
| supsup | 02AD6 | |
| swarhk | 02926 | |
| swArr | 021D9 | |
| ↙ | swarr | 02199 | 
| ↙ | swarrow | 02199 | 
| swnwar | 0292A | |
| ss | szlig | 000DF |